20,820 research outputs found

    The Effects of radial inflow of gas and galactic fountains on the chemical evolution of M31

    Full text link
    Galactic fountains and radial gas flows are very important ingredients in modeling the chemical evolution of galactic disks. Our aim here is to study the effects of galactic fountains and radial gas flows in the chemical evolution of the disk of M31. We adopt a ballistic method to study the effects of galactic fountains on the chemical enrichment of the M31 disk. We find that the landing coordinate for the fountains in M31 is no more than 1 kpc from the starting point, thus producing negligible effect on the chemical evolution of the disk. We find that the delay time in the enrichment process due to fountains is no longer than 100 Myr and this timescale also produces negligible effects on the results. Then, we compute the chemical evolution of the M31 disk with radial gas flows produced by the infall of extragalactic material and fountains. We find that a moderate inside-out formation of the disk coupled with radial flows of variable speed can very well reproduce the observed gradient. We discuss also the effects of other parameters such a threshold in the gas density for star formation and an efficiency of star formation varying with the galactic radius. We conclude that the most important physical processes in creating disk gradients are the inside-out formation and the radial gas flows. More data on abundance gradients both locally and at high redshift are necessary to confirm this conclusion.Comment: Accepted by A&

    Canonical Theory of 2+1 Gravity

    Get PDF
    Recently 2+1 dimensional gravity theory, especially AdS3{\rm AdS_3} has been studied extensively. It was shown to be equivalent to the 2+1 Chern-Simon theory and has been investigated to understand the black hole thermodynamics, i.e. Hawking temperature and others. The purpose of this report is to investigate the canonical formalism of the original 2+1 Einstein gravity theory instead of the Chern-Simon theory. For the spherically symmetric space-time, local conserved quantities(local mass and angular momentum) are introduced and using them canonical quantum theory is defined. Constraints are imposed on state vectors and solved analytically. The strategy to obtain the solution is followed by our previous work.Comment: 6 pages, talk given at LLWI-2000: From Particles to Universe, Alberta, 20-26 February 200

    A small and light weight heat exchanger for on-board helium refrigerator

    Get PDF
    A small and light weight heat exchanger used for small helium refrigerator has been developed by Sumitomo Heavy Industries, Ltd. This heat exchanger is a laminated metal heat exchanger which consists of perforated aluminum metal plates and glassfiber reinforced plastic separators. The size is from 100 mm to 28 mm in diameter and about 300 mm in length. The weight is from 2.5 kg to 0.6 kg. Also it can be used between room temperature and liquid helium temperature. The thermal efficiency obtained has been more than 96%. The heat exchanger has been practically used for on-board helium refrigerator in Japanese National Railways' superconducting magnetic levitated trains

    Charge dynamics in thermally and doping induced insulator-metal transitions of (Ti1-xVx)2O3

    Full text link
    Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by measurements of charge transport and optical conductivity spectra in a wide temperature range of 2-600K with the focus on the thermally and doping induced insulator-metal transitions (IMTs). The optical conductivity peaks for the interband transitions in the 3d t2g manifold are observed in the both insulating and metallic states, while their large variation (by ~0.4 eV) with change of temperature and doping level scales with that of the Ti-Ti dimer bond length, indicating the weakened singlet bond in the course of IMTs. The thermally and V-doping induced IMTs are driven with the increase in carrier density by band-crossing and hole-doping, respectively, in contrast to the canonical IMT of correlated oxides accompanied by the whole collapse of the Mott gap.Comment: 4 pages, 4 figure

    Economic Evaluation of Catch Share Program: Rhode Island Fluke Fishery Sector Pilot Program

    Get PDF
    Catch share, sector allocation, fishery management, Demand and Price Analysis, Resource /Energy Economics and Policy, Q22, Q28,

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result

    Get PDF
    It is shown that if a current-carrying magnetic flux tube is bulged at its axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma will be accelerated from z=+h,-h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase in toroidal flux density at z~0 increases the toroidal field Bphi and hence increases the magnetic pinch force at z~0 and so causes a reduction of the flux tube radius at z~0. Thus, the flux tube develops an axially uniform cross-section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure
    • …
    corecore